Skip to main content

Undergraduate Projects

📄️ Compact Solar Air Heater

During my fall 2017 semester at Rowan University, a fellow engineering student and I were tasked with designing, constructing, and optimizing a solar air heater capable of fitting inside a 24″ x 18″ x 18″ rectangular prism as part of our Thermal-Fluid Sciences I course. The overall goal of the project was to maximize two of the following three parameters: temperature rise from ambient (inlet) conditions to outlet temperature (△T), average total heat flow generated (dQ/dt), and average overall efficiency of conversion of solar energy flow to sensible heat flow (η). For our solar air heater, we chose to focus on achieving the highest temperature change from ambient conditions (△T) and average total heat flow generated (dQ/dt).

📄️ Low-Cost, Semi-Autonomous, Portable Mechanical Tester

During my fall 2018 and spring 2019 semesters at Rowan University, a fellow mechanical engineering student and I designed and fabricated a semi-autonomous, portable mechanical tester costing under $1000 with the ultimate goal marketing the device to academic institutions and small businesses. Over the course of the year, we managed to fully develop the electrical setup of the device and developed Python code to manually control the mechanical tester using a Raspberry Pi. In addition, we created a preliminary Python GUI for the device and created a custom PCB hat to use in conjunction with the Raspberry Pi. We also completely redesigned the mechanical tester in SolidWorks and fabricated the newly designed device using mills, lathes, drill presses, a laser cutter, an FDM 3D printer, and a water jet cutting machine.